
COMPUTATION OF EIGENFRECUENCIES FOR
ELASTIC BEAMS, A COMPARATIVE

APPROACH

Miguel Angel Moreles, Salvador Botello & Rogelio Salinas

Comunicación Técnica No I-03-09/25-04-2003
(CC/CIMAT)



Computation of eigenfrecuencies for elastic
beams, a comparative approach

Miguel Angel Moreles
CIMAT

moreles@cimat.mx

Salvador Botello
CIMAT

botello@cimat.mx

Rogelio Salinas
CIMAT

rogelio@cimat.mx



Abstract

In this manuscript we present an extensive study on mathematical and nu-
merical modeling of ßexural vibrations of elastic beams. We consider classical
one dimensional models. Three fundamental effects are considered; Bending,
Rotary Inertia and Shear. Based on the Wave Propagation Method (WPM),
we propose an asymptotic method corrected with a root Þnding technique
to compute eigenfrequencies to any desired accuracy. This method is ap-
plied successfully to equations involving bending and either rotary inertia
and shear.



Chapter 1

Introduction

Flexural motion of elastic beams is a problem of interest in structural engi-
neering. In particular, engineers need to calculate the natural frequencies,
or eigenfrequencies, of beam elements, that is, frequencies at which the elas-
tic beam freely vibrate. The reason is that another part of the system may
force it to vibrate at a frequency near one of its natural frequencies. If so,
resonance brings about a large ampliÞcation of the forcing amplitude with
potentially disastrous consequences.
The most realistic and accurate approach for computing eigenfrequencies

is to model the elastic beam based on the fundamentals of elasticity theory,
see Malvern [7],Fung [8]. Then compute eigenfrequencies by means of the
Þnite element method (FEM) Zienkiewicz & Taylor[10], Bathe [11]. The
model is three dimensional and consequently, the computational cost is high.
In applications one dimensional models are preferred. Three fundamental

effects are considered; Bending, Rotary Inertia and Shear. Following Russell
[4] or Achenbach [1] we may consider the energy of the system to obtain the
Timoshenko system (TS)

ρ
∂2Y

∂t2
−K ∂

2Y

∂x2
+K

∂ϕ

∂x
= 0

Iρ
∂2ϕ

∂t2
− EI ∂

2ϕ

∂x2
+K

!
ϕ− ∂Y

∂x

"
= 0

Here Y (x, t) represents the vertical displacement of the elastic axis of the
beam, and ϕ(x, t) is the rotation angle due to bending and shear.
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The physical constants in the model are: ρ ≡ linear density, EI ≡ ßexural
rigidity, Iρ ≡ rotary inertia and K ≡ shear modulus.
By formal differentiation the system can be uncoupled to obtain the Tim-

oshenko equation (TE)

ρ
∂2Y

∂t2
− Iρ ∂

4Y

∂t2∂x2
+ EI

∂4Y

∂x4
+
ρ

K

!
Iρ
∂4Y

∂t4
− EI ∂4Y

∂t2∂x2

"
= 0. (1.1)

In this equation −Iρ ∂
4Y

∂t2∂x2
is the contribution of rotary inertia and the

term due to shear is
ρ

K

!
Iρ
∂4Y

∂t4
−EI ∂4Y

∂t2∂x2

"
. If both effects are neglected

we obtain the well known Euler-Bernoulli equation

ρ
∂2Y

∂t2
+ EI

∂4Y

∂x4
= 0 .

Equation (1.1) is also obtained from equilibrium considerations if shear
and moment are assumed to arise from a distributed applied normal load
and moment, each per unit length, see Traill-Nash & Collar [6]. Therein a
frequency study is presented for the Timoshenko equation, the work is limited
by the computational resources of the time. A more qualitatively study of
the fundamental effects in beam theory is presented in Stephen [5]
The works mentioned above,are only a few of the vast literature on the

subject. Nevertheless, the fundamental problem from the modeling point of
view, still of current interest, is to asses the accuracy of the different models
obtained from the Timoshenko system and Timoshenko equation when some,
or all, of the effects are considered. Our purpose is to discuss this problem in
the context of natural frequencies and modes of vibration of the Timoshenko
equation. Also, we present a method to compute eigenfrecuencies to any
desired accuracy.
For the Euler-Bernoulli equation, Chen & Coleman [2] apply the Wave

Propagation Method (WPM) to estimate high order eigenfrecuencies, by
means of a formal perturbation approach the estimates are improved to in-
clude all low order eigenfrecuencies. Instead of this perturbation approach,
we propose a bracketing technique. We show that the WPM can be used
to enclose the eigenfrecuencies, which are then found by a simple iterative
method to any desired accuracy. An advantage of this approach is that gen-
eralizes to more general beam equations. In particular, we consider what
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we call the quasi Timoshenko equations, that is, equations which involve
bending and either rotary inertia or shear.
Computing eigenfrecuencies involves the solution of an eigenvalue prob-

lem for a differential operator, to make the problem well posed boundary
conditions need to be prescribed. Following Chen & Coleman[2] we con-
sider the following conÞgurations: Clamped-Clamped, Clamped-Simply sup-
ported, Clamped-Roller Supported, Clamped-Free. It will become apparent
that the method applies to any other conÞguration.
Of interest in its own right, is to provide asymptotic estimates for eigenfre-

cuencies, see Geist &McLaughlin [3] for such a study in the case of a free-free
Timoshenko system. In the proposed method, when enclosing eigenfrecuen-
cies we provide these estimates.
To test and validate our results, we carry out an exhaustive computational

study. We consider beams or four geometries: circular, elliptic, rectangular
and square. For each geometry we consider three different materials: alu-
minium, concrete and steel. To test the modeling virtues of 1-D models,
we compute the eigenfrecuencies using 3-D elasticity theory and FEM. For
cross validation, eigenfrecuencies for 1-D models are computed with FEM
and with the asymptotic method to be introduced.
To conclude this introduction, let us discuss in some detail the content of

this work.
In Chapter 1 we present the physical foundations of one dimensional

elastic beam models. The purpose is to illustrate the main properties of
the Timoshenko system and Timoshenko equation, and the role played for
the different physical effects under consideration. The Timoshenko system
turns out to be a coupled hyperbolic system for displacement an rotation
angle. If the solution is smooth the system can be uncoupled leading to the
Timoshenko equation. Remarkably, we shall see that the rotation angle also
satisÞes the Timoshenko equation.
The eigenvalue problem for the Timoshenko equation is the content of

Chapter 2. There, we present the mathematical formulation of the problem,
and introduce the quasi Timoshenko Equations with corresponding eigen-
value problems. Hereafter we work with the equation in adimensional form
and compute normalized eigenfrecuencies. Also in the chapter, there are two
sections describing the basics of FEM computation, 1-D and 3-D. We shall
note the numerical and computational requirements when using FEM.
In the context of the Euler-Bernoulli equation in the clamped-clamped

conÞguration, we present a simpliÞed version of WPM in Chapter 3. Eigen-

3



frecuencies are the roots of trascendental equations. Rouhly speaking, WPM
approximates these trascendental equations, by equations that are solved in
explicit form. For the same model we introduce an asymptotic method com-
plemented with a root Þnding technique to obtain high accuracy for eigen-
frecuencies. The WPM is used, not to approximate the roots, but to enclose
them. The method allows us to compute eigenfrecuencies of any order at
virtually no computational cost. Moreover, asymptotic estimates are derived
leading to a qualitatively description of the relationship between the physical
parameters and eigenfrecuencies of beams.
In Chapter 4 we complete the study of the Euler-Bernoulli equation for

the remaining conÞgurations, and show the same analysis for the incomplete
Timoshenko equations.
Extension of our work, as well as some problems of future research are

part of the content of Chapter 5 entitled Concluding Comments.
The numerical results for all beams are presented in the last chapter.

Frequencies are normalized, thus frequencies for an actual beam can be easily
derived.
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Chapter 2

One dimensional models

In practice, elastic beams are modeled as 1-dimensional structures assum-
ing that cross sections move as a whole. The effects to be considered are:
bending, rotary inertia and shear. For modelling we select an element of
the beam and obtain the equations of motion following two approaches. In
the Þrst approach we state equilibrium of forces in the element leading us
to the Timoshenko equation. For the second approach we propose an energy
functional whose minimizer satisÞes the so called Timoshenko System. The
former is a fourth order hyperbolic equation on displacement, the latter is a
second order hyperbolic systems on displacement and angle of rotation. As
a consequence, there is a great difference on the formulation of the initial
and boundary value problems of the equations themselves, as well as the for-
mulation of the corresponding eigenvalue problems. We shall explore these
differences in what follows.
It is our purpose to provide a tool to compute eigenfrecuencies of beams

in a straightforward fashion, hence units and dimensions are necessary. We
list the physical parameters under consideration, as well as their dimensions.
The dimensions of the quantities are given in term of mass, length, and
time, denoted as usual by M, L, T respectively; dimensionless quantities are
denoted by a unit.
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Symbol Dimensions DeÞnition
EI ML3T-2 Bending stiffness
K MLT-2 Shear modulus
F (x, t) MLT-2 Distributed moment, per unit length
f(x, t) MT-2 Distributed force, per unit length
κ L Radius of gytarion of beam section
L L Length of beam
M ML2T-2 Applied moment
Q MLT-2 Applied shear force
t T Time
x L Length coordinate
Y (x, t), y(x, t) L Lateral displacement
Z(x, t), z(x, t) L Component of lateral displacement due to bending
ω T-1 Circular frequency of vibration
ρ ML-1 Linear density of the beam
Iρ ML Rotatory inertia
θ 1 Amplitude of shearing angle

2.1 The Timoshenko equation

Consider an element of a uniform beam. The beam is originally straight and
lies along the x-axis. Let us assume that the shear force Q and the moment
M are positive in the y− direction, and in the sense from x to y, respectively.
If the shear stiffness of the section is K, the angle of shear is Q/C; if this
angle is added to that arising from bending, namely the slope ∂Z/∂x, we
have as the total angle

∂Y

∂x
=
∂Z

∂x
+
Q

K

further, since EI is the bending stiffness, the Euler-Bernoulli curvature for-
mula is

∂2Z

∂x2
=
M

EI

The main assumption here is that shear and moment arise from a distrib-
uted applied normal load f(x, t) and moment F (x, t), each per unit length.
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Equilibrium considerations for the element give

∂Q

∂x
+ f = 0

Q+
∂M

∂x
+ F = 0

By differentiation and substitution

∂2Y

∂x2
=
M

EI
− 1

K
f

−f +
∂2M

∂x2
+
∂F

∂x
= 0

and eliminating M

∂4Y

∂x4
=

1

EI
f − 1

EI

∂F

∂x
− 1

K

∂2f

∂x2

This equation deÞnes the displacement Y in terms of the applied force
and moment distributions. When this arise from inertia loads, that is, are
reversed mass acceleration, we have

f(x, t) = −ρ∂
2Y

∂t2

F (x, t) = −Iρ ∂
2

∂t2

!
∂Z

∂x

"

then we have

∂F

∂x
= −Iρ ∂

2

∂t2

#
M

EI

$
= −Iρ ∂

2

∂t2

!
∂2Y

∂x2
− ρ

K

∂2Y

∂t2

"

leading to the Timoshenko equation

ρ
∂2Y

∂t2
− Iρ ∂

4Y

∂t2∂x2
+ EI

∂4Y

∂x4
+
ρ

K

!
Iρ
∂4Y

∂t4
−EI ∂4Y

∂t2∂x2

"
= 0.

This equation incorporates bending, rotary inertia and shear.
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When vibration is only due to bending we obtain the Euler-Bernoulli
equation

ρ
∂2Y

∂t2
+ EI

∂4Y

∂x4
= 0. (2.1)

If shear is neglected we obtain the Rayleigh equation

ρ
∂2Y

∂t2
− Iρ ∂

4Y

∂t2∂x2
+ EI

∂4Y

∂x4
= 0

For convenience we shall refer to this equation sometimes as B+R
In some problems shear is more important than rotary inertia. Neglecting

the latter we obtain the equation B+S

ρ
∂2Y

∂t2
− ρEI
K

∂4Y

∂t2∂x2
+ EI

∂4Y

∂x4
= 0.

2.2 The Timoshenko system

The E-B equation is also obtained as the simplest equations in the theory of
ßexural motions of beams of arbitrary but uniform cross section with a plane
of simmetry. More precisely, it is assumed that the dominant displacement
component is parallel to the plane of simmetry. It is also assumed that the
deßections are small and that cross-sectional areas remain plane and normal
to the neutral axis. Equation (2.1), is the equation for a beam which is free
of lateral loading.
Substituting a harmonic wave, we Þnd for the phase velocity

c =

!
EI

ρ

"1/2

ω (2.2)

Thus the phase velocity is proportional to the wave number, which suggests
that (2.2) cannot be correct for large wavenumbers (short waves).
By taking in to account shear deformation in the description of the ßex-

ural motion of a rod we obtain a model which yields more satisfactory results
for shorter wavelengths. In this model it is still assumed that plane sections
remain plane; it is, however, not assumed that plane sections remain normal
to the neutral plane. After deformation the neutral axis has been rotated
through the small angle ∂Y/∂x, while the cross section has been rotated
through the angle ϕ. The shearing angle θ is the net decrease angle
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θ =
∂Y

∂x
− ϕ

The bending moment acting over the cross section is related to ϕ by the
relation

M = −EI ∂ϕ
∂x

(2.3)

The relation between the shear force Q and the angle θ is

Q = Kθ (2.4)

where K is a numerical factor which reßects the fact that the beam is not
in a state of uniform shear, but that (2.3) represents a relation between the
resultant shear force and some kind of average shear angle. The factor K
depends on the cross-sectional shape and on the rationale adopted in the
averaging process. Fortunately there is not very much spread in the values
of K obtained by different averaging processes. The factor does, however,
depend noticeably on the shape of the cross section.
By employing (2.3) and (2.4) the strain energy of a Þnite segment can be

computed as

U =

x2%
x1

1

2
EI

!
∂ϕ

∂x

"2

+
1

2
K

!
∂Y

∂x
− ϕ

"2
 dx

The corresponding kinetic energy is

K =

x2%
x1

1

2
ρ

!
∂Y

∂t

"2

+
1

2
Iρ

!
∂ϕ

∂t

"2
 dx

The total energy is

E =

x2%
x1

1

2
ρ

!
∂Y

∂t

"2

+
1

2
Iρ

!
∂ϕ

∂t

"2

+
1

2
EI

!
∂ϕ

∂x

"2

+
1

2
K

!
∂Y

∂x
− ϕ

"2
 dx

Subsequently Hamilton�s principle and the Euler equations can be em-
ployed to obtain the following set of governing equations for a homogeneous
beam
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ρ
∂2Y

∂t2
−K ∂

2Y

∂x2
+K

∂ϕ

∂x
= 0

Iρ
∂2ϕ

∂t2
− EI ∂

2ϕ

∂x2
+K

!
ϕ− ∂Y

∂x

"
= 0

As inspection quickly shows, these equations have the form of two cou-

pled wave equations. In general the wave speeds
*
K/ρ and

*
EI/Iρ are

different, resulting in a hyperbolic system with four families of characteristic

curves, consisting of two pairs corresponding to wave velocities ±
*
K/ρ and

±
*
EI/Iρ.

If shear is not considered, then the angle θ = 0 and ϕ = ∂Y/∂x. The
energy of the system is

E =

x2%
x1

1

2
ρ

!
∂Y

∂t

"2

+
1

2
Iρ

!
∂ϕ

∂t

"2

+
1

2
EI

!
∂ϕ

∂x

"2
 dx

which leads to the Rayleigh equation

ρ
∂2Y

∂t2
− Iρ ∂

4Y

∂t2∂x2
+ EI

∂4Y

∂x4
= 0

This model involves the rotary inertia effect. When this is neglected, the
energy is

E =

x2%
x1

1

2
ρ

!
∂Y

∂t

"2

+
1

2
EI

!
∂ϕ

∂x

"2
 dx

and we recover the E-B equation

ρ
∂2Y

∂t2
+ EI

∂4Y

∂x4
= 0

2.3 Fourth order equations

If the functions are smooth, it is possible to derive the Timoshenko equation
from the Timoshenko system. Indeed, let us recall the Timoshenko system
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ρ
∂2Y

∂t2
−K ∂

2Y

∂x2
+K

∂ϕ

∂x
= 0

Iρ
∂2ϕ

∂t2
− EI ∂

2ϕ

∂x2
+K

!
ϕ− ∂Y

∂x

"
= 0

(2.5)

Is the Þrst equation we solve for
∂ϕ

∂x
obtaining

∂ϕ

∂x
= − ρ

K

∂2Y

∂t2
+
∂2Y

∂x2

differentiating the second equation with respect to x we have

Iρ
∂3ϕ

∂t2∂x
− EI ∂

3ϕ

∂x3
+K

!
∂ϕ

∂x
− ∂

2Y

∂x2

"
= 0

after substitution

Iρ

!
− ρ
K

∂4Y

∂t4
+

∂4Y

∂t2∂x2

"
−EI

!
− ρ
K

∂4Y

∂x2∂t2
+
∂4Y

∂x4

"
+

+ K

!
− ρ
K

∂2Y

∂t2
+
∂2Y

∂x2

"
−K ∂

2Y

∂x2
= 0

simplifying

ρ
∂2Y

∂t2
−Iρ ∂

4Y

∂t2∂x2
+EI

!
− ρ
K

∂4Y

∂x2∂t2
+
∂4Y

∂x4

"
+
ρ

K

!
Iρ
∂4Y

∂t4
− EI ∂4Y

∂x2∂t2

"
= 0

as asserted.
It is remarkable that the same equation is obtained for ϕ. In fact, solving

for
∂Y

∂x
in the equation for ϕ in (2.5)

∂Y

∂x
=
Iρ
K

∂2ϕ

∂t2
− EI
K

∂2ϕ

∂x2
+ ϕ

differentiate with respect to x in the equation for Y in (2.5)

ρ
∂3Y

∂x∂t2
−K ∂

3Y

∂x3
+K

∂2ϕ

∂x2
= 0
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after substitution

ρ

!
Iρ
K

∂4ϕ

∂t4
− EI
K

∂4ϕ

∂t2∂x2
+
∂2ϕ

∂t2

"
−K

!
Iρ
K

∂4ϕ

∂x2∂t2
− EI
K

∂4ϕ

∂x4
+
∂2ϕ

∂x2

"
+K

∂2ϕ

∂x2
= 0

which leads to

ρ
∂2ϕ

∂t2
− Iρ ∂4ϕ

∂t2∂x2
+EI

!
− ρ
K

∂4ϕ

∂x2∂t2
+
∂4ϕ

∂x4

"
+
ρ

K

!
Iρ
∂4ϕ

∂t4
− EI ∂4ϕ

∂x2∂t2

"
= 0

Remark. It is of interest to study these fourth order equations and
compare with Timoshenko System.
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Chapter 3

The Eigenvalue Problem

In this chapter we pose the eigenvalue problems of interest. Next, as a basis
for comparison with the asymptotic method to be introduced, we describe
the basics of 1-D FEM computations.
The benchmark model for an elastic beam is obtained from 3-D elasticity

theory. Eigenfrecuencies are computed with FEM. An example of such a
computation is presented in the last section.

3.1 Problem Formulation

Let us consider the Timoshenko equation.

ρ
∂2Y

∂t2
− Iρ ∂

2

∂t2

!
∂2Y

∂x2

"
+ EI

∂4Y

∂x4
+
ρ

K

!
Iρ
∂4Y

∂t4
− EI ∂

2

∂t2

!
∂2Y

∂x2

""
= 0

under harmonic motion

Y (x, t) = y(x)e−iωt

we have

−ρω2y + Iρω
2d

2y

dx2
+ EI

d4y

dx4
+
ρ

K
ω2

!
Iρω

2y + EI
d2y

dx2

"
= 0 (3.1)

In dimensionless form
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ξ = x/L
η = y/L

φ2 = (ρω2L4) /EI
α = EI/ (KL2)
β = Iρ/ (ρL2)

where L is some speciÞed length, e.g. the length of the beam.
Equation (3.1) then becomes

d4η

dξ4 + φ2 (α + β)
d2η

dξ2 − φ2
+
1− φ2αβ

,
η = 0

We are interested in the following boundary conditions

A. Displacement zero: η = 0

B. Total slope zero:
dη

dξ
= 0

C. Slope due to bending only zero: α
d3η

dξ3 +
+
1 + φ2α2

, dη
dξ

= 0

D. Moment zero:
d2η

dξ2 + φ2αη = 0

E. Shear zero:
d3η

dξ3 + φ2 (α + β)
dη

dξ
= 0

To make the eigenvalue problem well posed, two boundary conditions
need to be prescribed at both ends. In reference to Table , we consider the
following conditions for any end of the beam;

� Clamped: A, B
� Simply sypported: A, D
� Roller supported: B, E
� Free: D, E
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3.2 Quasi-Timoshenko equations

We call a quasi-Timoshenko equation, an equation of the form

d4η

dξ4 + φ2γ
d2η

dξ2 − φ2η = 0 (3.2)

where γ is a small nonnegative parameter representing either shear or ro-
tary inertia. Next we present the corresponding equations and boundary
conditions.

3.2.1 B+R equation

In this case there is no shear, that is, α = 0. Equation (3.1) then becomes

d4η

dξ4 + φ2β
d2η

dξ2 − φ2η = 0

Boundary conditions correspond to

A. Displacement zero: η = 0

B. Total slope zero:
dη

dξ
= 0

C. Slope due to bending only zero:
dη

dξ
= 0

D. Moment zero:
d2η

dξ2 = 0

E. Shear zero:
d3η

dξ3 + φ2β
dη

dξ
= 0

3.2.2 B+S equation

When β = 0 there is no rotary inertia effect and the resulting equation is

d4η

dξ4 + φ2α
d2η

dξ2 − φ2η = 0

The corresponding boundary conditions are given by
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A. Displacement zero: η = 0

B. Total slope zero:
dη

dξ
= 0

C. Slope due to bending only zero: α
d3η

dξ3 +
+
1 + φ2α2

, dη
dξ

= 0

D. Moment zero:
d2η

dξ2 + φ2αη = 0

E. Shear zero:
d3η

dξ3 + φ2α
dη

dξ
= 0

3.3 1-D FEM computations

To deal with the numerical approximaton of the eigenvalue problem corre-
sponding to equation (3.2), one of the most versatile and accurate method is
the Finite Element Method (FEM). Which we use to validate our results.
For the reader�s convenience, let us present a brief description of FEM.
Consider the eigenvalue problem for the incomplete Timoshenko equation

d4η

dξ4 = φ2

!
−γd

2η

dξ2 + η

"
, ξ ∈ (0, 1) (3.3)

For simplicity of exposition, we consider the equation subject to clamped-
clamped boundary conditions, η(0) = η"(0) = η(1) = η"(1).
We deÞne the test space V, as the space of functions v satisfying the

clamped-clamped boundary conditions v(0) = v"(0) = v(1) = v"(1) = 0.
Multiplying equation (3.3) by a test function v we obtain after integration

by parts

% d2η

dξ2

d2v

dξ2 = φ2
% !

γ
dη

dξ

dv

dξ
+ ηv

"
(3.4)

This leads to the weak formulation of the eigenvalue problem:
Find η ∈ V such that η solves (3.4) for all v ∈ V.
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Next we apply the Galerkin method, that is, we construct Vh, a Þnite
dimensional subspace of V and consider the weak formulation in a Þnite
dimensional setting, namely, the Galerkin formulation:
Find η ∈ Vh such is η solves (3.4) for all v ∈ Vh.
If Vh of dimension n, we may consider a basis, say {v1, . . . vn} . The prob-

lem is equivalent to Þnding η ∈ Vh such that%
d2η

dξ2

d2vi
dξ2 = φ2

% !
γ
dη

dξ

dvi
dξ

+ ηvi

"
, i = 1, 2, . . . n (3.5)

Since η ∈ Vh we have

η(ξ) =
n-
j=1

ηjvj(ξ)

and (3.5) becomes a generalized eigenvalue problem

Aη =φ2 (γB+C)η

where η = (η1, . . . , ηn)t , and
A = [Aij ], Aij =

.
v""j v

""
i

B = [Bij], Bij =
.
v"jv

"
i

C = [Cij], Cij =
.
vjvi

It is apparent that to have a good approximation n is necessarily large.
Hence the basis of Vh has to be chosen carefully.
With FEM a basis is formed by continuous functions which are com-

pactly supported and locally polynomials. For beam equations a conve-
nient basis is formed by using Hermite polynomials. We proceed as follows.
The interval [0, 1], is partitioned into nonoverlapping subintervals (elements),
I1 = [ξ0, ξ1], . . . In = [ξn−1, ξn]. Here ξ0 = 0 and ξn = 1. For each node ξi, a
pair of basis functions, ϕi, ψi are selected with the following properties:

1. ϕi(ξj) = δij

2. ϕ"i(ξj) = 0

3. supp(ϕi) = Ii ∪ Ii+1

4. ϕi|Ij
a cubic polynomial for j = i, i+ 1

5. ψi(ξj) = 0
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6. ψ"i(ξj) = δij

7. supp(ψi) = Ii ∪ Ii+1

8. ψi|Ij
a cubic polynomial for j = i, i+ 1

The resulting eigenvalue problem involves banded matrices which are
symmetric and positive deÞnite. These properties make tractable the nu-
merical approximation.

3.4 3-D Theory

Let us consider a rectangular beam in the clamped-clamped conÞguration
with dimensions 30 cm width, 50 cm height, 300 cm length.. The material
properties are: Young Modulus E = 200, 000kg/cm3, Poisson ratio ν = 0.2,

density d = 2.449x10−6 kg−s2

cm
. Using the 3-D FEM model, Botello& Oñate

[12], the estimated values for the Þrst frequencies are shown in Table 2.1.

Frec. 3-D FEM (rad/seg)
1 902.690
2 2153.09
3 3680.71
4 5354.43
5 7119.67
6 9121.56
7 10783.9
8 12703.8
9 13337.9
10 14619.1

TABLE 2.1

The computation was carried out with a grid of 182406 tetrahedral ele-
ments and linear shape functions. To complete the 3-D model we need modes
of vibration, a few are shown in Figure 2.1.
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Figure 2.1. Fundamental modes of vibration.

Is worth to mention that to estimate the eigenfrecuencies and modes of
vibration of a particular elastic beam, a lab experiment can be developed.
Unfortunately, the cost to generate a table and Þgure like the ones shown
above is prohibited.
To obtain a similar degree of numerical accuracy with one dimensional

models we need no more than 150 elements. The number of elements re-
ßects, not only the size of the linear system to solve, but also the numerical
integrations to be computed.
One may argue that the most difficult part for applying FEM, is the

partition of the domain in Þnite elements. For 1-D models this is trivial.
We consider the eigenfrecuencies of the 3-D model as the actual eigenfre-

cuencies of vibrations of elastic beams, and discuss the modelling virtues of
the various one dimensional models presented above.
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Chapter 4

Asymptotic Methods

With the appropriate boundary conditions, the eigenvalue problem for the
quasi-Timoshenko equation has eigenvalues 0 < φ1 < φ2 < . . . < φn, with
φn %∞. The corresponding mode of vibration ηn(x) is the sum of two func-
tions, one of which decays rapidly with φn. The Wave Propagation Method
(WPM) disregards the latter to estimate the eigenvalue φn. A formal pertur-
bation is proposed in Chen & Coleman [2] to improve the estimate by WPM
for eigenfrecuencies of the Euler-Bernoulli beam. Here we present an alterna-
tive approach to improve thr results of WPM also for the quasi-Timoshenko
equation.

4.1 The wave propagation method (WPM)

To illustrate the WPM we consider the E-B equation

d4η

dξ4 − φ2η = 0

subject to clamped-clamped conditions

η(0) = η"(0) = η(1) = η"(1) = 0 (4.1)

For simplicity we write

η(4)(ξ)− k4η(ξ) = 0, 0 < x < 1, (4.2)

where k2 = φ, k > 0.
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The eigenvalue problem, therefore, is to determine all values of k which
satisfy equation (4.2), subject to the boundary conditions given in equation
(4.1).
Is is well known that the eigenvalue problem does not have any closed

form solutions. We Þrst recall the standard, straightforward approach to
determine k that is familiar. For k > 0 the general solution of equation (4.2)
is

η(ξ) = A cos kξ +B sin kξ + Ce−kξ +Dekξ

substitute this equation into the (C-C) boundary conditions in (4.1), yielding
1 0 1 e−k

0 k −k ke−k

cos k sin k e−k 1
−k sin k k cos k −ke−k k



A
B
C
D

 =


0
0
0
0


In order to have a non-trivial solution, k satisÞes the transcendental equa-

tion determined by the zero determinant condition111111111
1 0 1 e−k

0 k −k ke−k

cos k sin k e−k ek

−k sin k k cos k −ke−k kek

111111111 = 0 (4.3)

or

−2k2 cos k + 4k2e−k − 2k2 cos k e−2k = 0

Hence, we need to Þnd roots of the equation

− cos k + 2e−k − cos k e−2k = 0 (4.4)

An expression of k from equation (4.4) is not possible, an asymptotic
approach to estimate the solution by means of the WPM is shown below..
Let us write the solution η(ξ) in the form

η(ξ) = A cos kξ +B sin kξ + Ce−kξ +Dek(ξ−1)

Observe that for k large, the third term e−kξ is negligible for ξ = 1,
whereas the same is true for the fourth term e−k(ξ−1) if ξ = 0. Hence the
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function η(ξ) behaves like A cos kξ+B sin kξ+Ce−kξ forξ near zero, and like
A cos kξ+B sin kξ+De−k(ξ−1) for ξ near one. This suggests to disregard the
terms involving e−k in the determinant equation (4.3). Thus we have111111111

1 0 1 0
0 k −k 0

cos k sin k 0 ek

−k sin k k cos k 0 kek

111111111 = 0

After some simpliÞcation, we are led to solve for k the equation

cos k = 0

Consecuently, the eigenvalue problem

η(4)(ξ)− k4η(ξ) = 0, 0 < ξ < 1,

η(0) = η"(0) = η(1) = η"(1) = 0

has non-trivial solution η when

φ2 ≈ k4 =
2
(2n+ 1)

π

2

34

, n = 1, 2, . . .

or

φ ≈ k2 =
2
(2n+ 1)

π

2

32

, n = 1, 2, . . .

As we can see from Table 3.1, the adimensional frequencies in this ex-
pression gives good estimates except for a few of the smallest eigenvalues.

Frec. 1-D FEM WPM
1 22.37329 22.20660
2 61.67282 61.68503
3 120.90339 120.90265
4 199.85946 199.85949
5 298.55557 298.55553
6 416.99089 416.99079
7 555.16548 555.16525
8 713.07941 713.07892
9 890.73277 890.73180
10 1088.12565 1088.12389

Table 3.1
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Remark. The same conclusion holds for other boundary conditions, that
is, the WPM gives good estimates for all but a few low order eigenfrecuencies.

4.2 High accuracy of eigenfrecuencies by the

WPM and bracketing

Instead of the perturbation approach in Chen & Coleman [2], we improve the
aproximation of the eigenvalues by applying a simple iterative method. We
illustrate the technique with the Euler-Bernoulli equation in the C-C case.
Substituting the C-C boundary conditions for

η(ξ) = A cos kξ +B sin kξ + Ce−kξ +Dek(ξ−1)

we obtain 
1 0 1 e−k

0 k −k ke−k

cos k sin k e−k 1
−k sin k k cos k −ke−k k



A
B
C
D

 =


0
0
0
0


Let

fd(k) = det


1 0 1 e−k

0 k −k ke−k

cos k sin k e−k 1
−k sin k k cos k −ke−k k


thus

fd(k) = k2 det


1 0 1 e−k

0 1 −1 e−k

cos k sin k e−k 1
− sin k cos k −e−k 1


or

fd(k) = −2k2
4+

1 + e−2k
,

cos k − 2e−k
5

(4.5)

>From (4.5) it suffices to Þnd zeros of the function
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f(k) =
+
1 + e−2k

,
cos k − 2e−k (4.6)

It is readily seen that in the intervals

nπ ≤ k ≤ (n+ 1)π n = 1, 2, . . . (4.7)

f(k) is strictly monotone and f (nπ)f ((n+ 1)π) < 0, hence, there is only one
root of f(k) in such intervals.
Recall that φ = k2 hence φ is monotone on k. Thus, the interval (4.7)

provides asymptotic estimates for the eigenfrecuency

n2π2 ≤ φ ≤ (n+ 1)2π2 n = 1, 2, . . .

In this case improving these estimates is a trivial matter.
The roots of function (4.6) can be found by bisection to any desired ac-

curacy. See the results in Table 3.2 for the adimensional natural frecuencies.

Frec. 1-D FEM WPMB
1 22.37329 22.37329
2 61.67282 61.67282
3 120.90339 120.90339
4 199.85946 199.85945
5 298.55557 298.55554
6 416.99089 416.99079
7 555.16548 555.16525
8 713.07941 713.07892
9 890.73277 890.73180
10 1088.12565 1088.12389

Table 3.2

Remark. By considering the full determinat function, the WPMB is
more accurate than 1-D FEM. Starting on the fourth eigenfrecuency, there
is a slight difference on the estimates for the eigenfrecuencies. This is due to
the accumulation of error when solving the generalized eigenvalue problem
arising from FEM.
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Chapter 5

Eigenfrecuencies of Elastic
Beams by WPM and
Bracketing

In this chapter we use WPM to estimate the intervals to initiate the iterative
search of eigenfrecuencies for all beams and conÞgurations of interest.
In what follows we denote by fd the full determinant function of the beam

in consideration, and by f the function for root Þnding.
For each beam and conÞguration we list the matrix of the corresponding

homogeneous system, fd, f, and the intervals enclosing the eigenfrecuencies.
Computations are straightforward, when necessary we provide additional

details.

5.1 The Euler-Bernoulli Equation

5.1.1 The (C-C) case

>From the previous chapter we have

fd(k) = f (k) =
+
1 + e−2k

,
cos k − 2e−k

and

nπ ≤ k ≤ (n+ 1)π n = 1, 2, . . .
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5.1.2 The (C-S) case


1 0 1 e−k

0 k −k ke−k

cos k sin k e−k 1
−k2 cos k −k2 sin kx k2e−k k2



fd(k) = 2k3
4
−
+
1− e−2k

,
cos k +

+
1 + e−2k

,
sin k

5

f(k) = −
+
1− e−2k

,
cos k +

+
1 + e−2k

,
sin k

nπ < k <
#

1

2
+ n

$
π, n = 1, 2, . . .

5.1.3 The (C-R) case


1 0 1 e−k

0 k −k ke−k

−k sin k k cos k −ke−k k
k3 sin k −k3 cos k −k3e−k k3



fd(k) = 2k5
4+

1− e−2k
,

cos k +
+
1 + e−2k

,
sin k

5

f(k) =
+
1− e−2k

,
cos k +

+
1 + e−2k

,
sin k

#
1

2
+ n

$
π < k < (1 + n)π, n = 1, 2, . . .
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5.1.4 The (C-F) case


1 0 1 e−k

0 k −k ke−k

−k2 cos k −k2 sin k k2e−k k2

k3 sin k −k3 cos k −k3e−k k3



fd(k) = 2k6
4+

1 + e−2k
,

cos k + 2e−k
5

f (k) =
+
1 + e−2k

,
cos k + 2e−k

nπ ≤ k ≤ (n+ 1)π n = 0, 1, 2, . . .

5.2 Quasi-Timoshenko Equations

Let recall the Timosehnko equation

d4η

dξ4 + φ2 (α + β)
d2η

dξ2 − φ2
+
1− φ2αβ

,
η = 0

The quasi-Timoshenko equations are

d4η

dξ4 + φ2β
d2η

dξ2 − φ2η = 0

d4η

dξ4 + φ2α
d2η

dξ2 − φ2η = 0

Both models have the form

d4η

dξ4 + γφ2d
2η

dξ2 − φ2η = 0

The characteristic polynomial is

P (r) = r4 + γφ2r2 − φ2
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It has the four roots

r1 = −r2 = −iλ

r3 = −r4 = −µ

Where

λ =

6
1

2
γφ2 +

1

2

7+
γ2φ4 + 4φ2

,
(5.1)

µ =

6
−1

2
γφ2 +

1

2

7+
γ2φ4 + 4φ2

,
(5.2)

For later reference we see that

λ2 − µ2 = γφ2

µλ = φ

Intervals for the eigenfrecuencies will be given in terms of λ. Let us deduce
some properties of λ and µ as functions of φ.
>From (5.1) it is readily seen that λ"(φ) > 0, hence λ is strictly increasing

and unbounded. It can be inverted to obtain

φ2 =
λ4

1 + γλ2 (5.3)

Consequently, when Þnding an interval for λ, a corresponding interval for
φ is derived from (5.3).
For µ we ca write

µ2 =
2

γ +

6
γ2 +

4

φ

We see that µ is also strictly increasing with respect to φ. Moreover,

µ→ 1√
γ
, when φ%∞ (5.4)
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We have the mode of vibration η(ξ)

η(ξ) = A cos λξ +B sinλξ + Ce−µξ +Deµ(ξ−1)

Because of (5.4), the term e−µ does not tend to zero with φ, unlike the
corresponding term for the Euler-Bernoulli beam. Nevertheless, for actual
beams, γ is small, thus e−µ is small and decreases to e−1/

√
γ. Thanks to these

properties, we will be able to consider e−µ negligible.

5.3 The B+R Equation

Here we study the equation

d4η

dξ4 + φ2β
d2η

dξ2 − φ2η = 0

The corresponding boundary conditions are
A. Displacement zero: η = 0

B. Total slope zero:
dη

dξ
= 0

C. Slope due to bending only zero:
dη

dξ
= 0

D. Moment zero:
d2η

dξ2 = 0

E. Shear zero:
d3η

dξ3 + φ2β
dη

dξ
= 0

5.3.1 The C-C case


1 0 1 e−µ

0 λ −µ µe−µ

cosλ sinλ e−µ 1
−λ sinλ λ cos λ −µe−µ µ


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fd = φ
4
−γφ

+
1− e−2µ

,
sinλ− 2

+
1 + e−2µ

,
cosλ + 4e−µ

5
f (λ) = φγ

+
1− e−2µ

,
sinλ + 2

+
1 + e−2µ

,
cosλ− 4e−µ

#
1

2
+ n

$
π < λ < (1 + n)π, n = 1, 2, 3, ...

5.3.2 The (C-S) case


1 0 1 e−µ

0 λ −µ µe−µ

cosλ sin λ e−µ 1
−λ2 cos λ −λ2 sinλ µ2e−µ µ2



fd(λ) =
+
µ2 + λ2

, 4+
1 + e−2µ

,
µ sin λ−

+
1− e−2µ

,
λ cosλ

5
f(λ) =

+
1 + e−2µ

,
µ sinλ−

+
1− e−2µ

,
λ cosλ

nπ < λ <
#

1

2
+ n

$
π, n = 1, 2, 3, ...

5.3.3 The (C-R) case


1 0 1 e−µ

0 λ −µ µe−µ

−λ sinλ λ cos λ −µe−µ µ
λ3 sinλ− φ2βλ sinλ −λ3 cos λ+ φ2βλ cos λ −µ3e−µ − φ2βµe−µ µ3 + φ2βµ



fd(λ) = λµ
+
µ2 + λ2

, +
µ cosλ

+
1− e−2µ

,
+ λ sin λ

+
1 + e−2µ

,,
f(λ) =

+
µ cos λ

+
1− e−2µ

,
+ λ sin λ

+
1 + e−2µ

,,
#

1

2
+ n

$
π < λ < (1 + n)π, n = 0, 1, 2, ...
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5.3.4 The C-F case


1 0 1 e−µ

0 λ −µ µe−µ

−λ2 cos λ −λ2 sinλ µ2e−µ µ2

λ3 sinλ− φ2βλ sinλ −λ3 cos λ+ φ2βλ cos λ −µ3e−µ − φ2βµe−µ µ3 + φ2βµ



fd(λ) = µλ
4+
µ4 + λ4

, +
1 + e2(−µ)

,
cosλ− λµ

+
λ2 − µ2

, +
1− e2(−µ)

,
sin λ+ 4λ2µ2e−µ

5
but from (5.1) and (5.2)

fd(λ) = µλφ2
4+

2 + βφ2
, +

1 + e2(−µ)
,

cosλ− φβ
+
1− e2(−µ)

,
sin λ+ 4e−µ

5

f (λ) =
+
2 + βφ2

, +
1 + e2(−µ)

,
cosλ− φβ

+
1− e2(−µ)

,
sinλ + 4e−µ

π

2
< λ < π

nπ < λ <
#

1

2
+ n

$
π n = 1, 2, 3, . . .

5.4 The B+S equation

β = 0

d4η

dξ4 + φ2α
d2η

dξ2 − φ2η = 0

Boundary conditions
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A. Displacement zero: η = 0

B. Total slope zero:
dη

dξ
= 0

C. Slope due to bending only zero: α
d3η

dξ3 +
+
1 + φ2α2

, dη
dξ

= 0

D. Moment zero:
d2η

dξ2 + φ2αη = 0

E. Shear zero:
d3η

dξ3 + φ2α
dη

dξ
= 0

5.4.1 The (C-C) case


1 0 1 e−µ

0 λ −µ µe−µ

cosλ sinλ e−µ 1
−λ sinλ λ cos λ −µe−µ µ



fd = φ
4
−γφ

+
1− e−2µ

,
sinλ− 2

+
1 + e−2µ

,
cosλ + 4e−µ

5

f (λ) = φγ
+
1− e−2µ

,
sinλ + 2

+
1 + e−2µ

,
cosλ− 4e−µ

#
1

2
+ n

$
π < λ < (1 + n)π, n = 1, 2, 3, ...

5.4.2 The (C-S) case


1 0 1 e−µ

0 λ −µ µe−µ

cosλ sinλ e−µ 1+
−λ2 + φ2α

,
cos λ

+
−λ2 + φ2α

,
sin λ

+
µ2 + φ2α

,
e−µ µ2 + φ2α


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fd(λ) =
+
λ2 + µ2

, 4+
1 + e−2µ

,
µ sin λ−

+
1− e−2µ

,
λ cosλ

5

f(λ) =
+
1 + e−2µ

,
µ sinλ−

+
1− e−2µ

,
λ cosλ

nπ < λ <
#

1

2
+ n

$
π, n = 1, 2, 3, ...

5.4.3 The (C-R) case


1 0 1 e−µ

0 λ −µ µe−µ

−λ sin λ λ cosλ −µe−µ µ
λ3 sinλ− φ2αλ sinλ −λ3 cos λ+ φ2αλ cos λ −µ3e−µ − φ2αµe−µ µ3 + φ2αµ



fd (λ) = λµ
+
µ2 + λ2

, +
µ cosλ

+
1− e−2µ

,
+ λ sin λ

+
1 + e−2µ

,,

f (λ) = µ cosλ
+
1− e−2µ

,
+ λ sin λ

+
1 + e−2µ

,
#

1

2
+ n

$
π < λ < (1 + n)π, n = 0, 1, 2, 3, ...

5.4.4 The (C-F) case


1 0 1 e−µ

0 λ −µ µe−µ+
−λ2 + φ2α

,
cos λ

+
−λ2 + φ2α

,
sinλ

+
µ2 + φ2α

,
e−µ µ2 + φ2α+

λ2 − φ2α
,
λ sinλ −

+
λ2 − φ2α

,
λ cos λ −

+
µ2 + φ2α

,
µe−µ

+
µ2 + φ2α

,
µ



fd(λ) = µλ
4+
λ2 − µ2

, +
1− e2(−µ)

,
µ (sinλ)λ +

+
1 + e−2µ

,
2µ2 (cosλ)λ2 + 2

+
λ4 + µ4

,
e−µ

5
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again from (5.1) and (5.2)

fd(λ) = φ
4
αφ3

+
1− e2(−µ)

,
(sinλ) +

+
1 + e−2µ

,
2φ2 (cos λ) + 2φ2

+
φ2α2 + 2

,
e−µ

5
thus

fd(λ) = φ3
4
αφ

+
1− e2(−µ)

,
(sin λ) +

+
1 + e−2µ

,
2 (cos λ) + 2

+
φ2α2 + 2

,
e−µ

5

f (λ) = αφ
+
1− e2(−µ)

,
(sin λ) +

+
1 + e−2µ

,
2 (cos λ) + 2

+
φ2α2 + 2

,
e−µ

In this case we write

f(λ) = α
λ2*

1 + αλ2

+
1− e2(−µ)

,
(sinλ)+

+
1 + e−2µ

,
2 (cosλ)+2

+
1 + αλ2

,2
+ 1

1 + αλ2 e−µ

#
1

2
+ n

$
π < λ < (1 + n)π, n = 0, 1, 2, 3, ...
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Chapter 6

Concluding Comments

In Chapter 2 we described 1-D models for the elastic beam equations. It
is readily seen that when shear is neglected, the models arising from Tim-
oshenko equation and Timoshenko system are identical. Thus, we have a
1-D model for the elastic beam incorporating bending and/or rotary inertia.
When shear is the main effect to be consider we obtain different models. A
comparative study is wanted. Of particular interest is to compare the Tim-
oshenko system against the two Timoshenko equations for displacement and
rotation angle.
One of the problems left to study in Chapter 3, is the eigenvalue problem

for the Timoshenko equation

d4η

dξ4 + φ2 (α + β)
d2η

dξ2 − φ2
+
1− φ2αβ

,
η = 0

By denoting λ = φ2. We obtain a quadratic eigenvalue problem.

d4η

dξ4 + λ (α + β)
d2η

dξ2 − λ (1− λαβ) η = 0

By using FEM it can be reduced to a linear generalized eigenvalue prob-
lem. The matrices in this problem are unstructured, and due to the change
of variable, spurious eigenvalues are found. An algorithm to deal with this
problem is part of our current work.
We have introduced an asymptotic method in Chapter 4 and applied it

succesfully to the quasi-Timoshenko equations in Chapter 5. The method
is simple, higly accurate and allows to compute frequencies of any order at
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virtually no cost. An extension to the Timoshenko equation and Timoshenko
system is part of our ongoing research. Also, by reÞning the asymptotic es-
timates for the eigenfrecuencies, we may have a tool to deal with inverse
eigenvalue problem, for instance, in applications is common to have measur-
ments of eigenfrecuencies and modes of vibration. The problem of interest is
to characterize the material, that is a problem of parameter identiÞcation.
Finally in the Appendix we have considered some common beam speci-

mens. Our purpose is to provide to the reader a tool for making a decision on
model choice and beam design, as well as computation of eigenfrecuencies.
To decide over the modelling virtues of the different 1-D models, the nu-

merical data collected in the Appendix, can be used as a basis for a statistical
study.
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Chapter 7

Appendix

Here we list computations of eigenfrecuencies by 3-D FEM, 1-D FEM and
the method developed refered to as the aymptotic method.
In each section a beam is presented with realistic parameters. All tables

present normalized frecuencies. To Þnd the actual freecuencies recall that

φ2 =
+
ρω2L4

,
/EI

Thus the true eigenfrecuency is

ω =

!
1

L2

6
EI

ρ

"
φ

For the parameters α and β in the quasi-Timoshenko equations, recall
that

α = EI/ (KL2)
β = Iρ/ (ρL2)

In the description of the beam especimens ρ is denoted by D, Iρ =
I

A
,

and K = GA. All the frecuencies are adimensional in this appendix.
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7.1 Circular Beam

7.1.1 Aluminium

Figure 6.1. Physical parameters for a circular aluminium beam.

Table 6.1. Eigenfrecuencies by 3-D FEM for a circular aluminium beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.2. Euler-Bernoulli by Asymptotic Method for a circular aluminium
beam..

Table 6.3. B+R by Asymptotic Method for a circular aluminium beam.
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Table 6.4. B+S by Asymptotic Method for a circular aluminium beam.

Eigenfrecuencies by 1-D FEM

Table 6.5. Euler-Bernoulli by 1-D FEM for a circular aluminium beam.
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Table 6.6. B+R by 1-D FEM for a circular aluminium beam.

Table 6.7. B+S by 1-D FEM for a circular aluminium beam.
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7.1.2 Concrete

Figure 6.2. Physical parameters for a circular concrete beam.

Table 6.8 Eigenfrecuencies by 3-D FEM for a circular concrete beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.9. Euler-Bernoulli by Asymptotic Method for a circular concrete
beam.

Tabe 6.10 B+R by Asymptotic Method for a circular concrete beam.
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Table 6.11. B+S by Asymptotic Method for a circular concrete beam.

Eigenfrecuencies by 1-D FEM

Table 6.12. Euler-Bernoulli by 1-D FEM for a circular concrete beam.

44



Table 6.13. B+R by 1-D FEM for a circular concrete beam.

Table 6.14. B+S by 1-D FEM for a circular concrete beam.
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7.1.3 Steel

Figure 6.3. Physical parameters for a circular steel beam.

Table 6.15. Eigenfrecuencies by 3d FEM for a circular steel beam.
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Eigenfrecuencies by Asymptotic Method

Table. 6.16. Euler-Bernoulli by Asymptotic Method for circular steel beam.

Table 6.17. B+R by Asymptotic Method for a circular steel beam.
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Table 6.18. B+S by Asymptotic Method for a circular steel beam.

Eigenfrecuencies by 1-D FEM

Table 6.19. Euler-Bernoulli by 1-D FEM for a circular steel beam.
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Table 6.20. B+R by 1-D FEM for a circular steel beam.

Table 6.21. B+S by 1-D FEM for a circular steel beam.
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7.2 Elliptic Beam

7.2.1 Aluminium

Figure 6.4. Physical parameters for an elliptic aluminium beam.

Table 6.22. Eigenfrecuencies by 3d FEM for an elliptic aluminium beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.23. Euler-Bernoulli by Asymptotic Method for an elliptic
aluminium beam.

Table 6.24. B+R by Asymptotic Method for an elliptic aluminium beam.
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Table 6.25. B+S by Asymptotic Method for an elliptic aluminium beam.

Eigenfrecuencies by 1-D FEM

Table 6.26. Euler-Bernoulli by 1-D FEM for an elliptic aluminium beam.
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Table 6.27. B+R by 1-D FEM for an elliptic aluminium beam.

Table 6.28. B+S by 1-D FEM for an elliptic aluminium beam.
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7.2.2 Concrete

Figure 6.5. Physical parameters for an elliptic concrete beam.

Table 6.29. Eigenfrecuencies by 3d FEM for an elliptic concrete beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.30. Euler-Bernoulli by Asymptotic Method for an elliptic concrete
beam.

Table 6.31. B + R by Asymptotic Method for an elliptic concrete beam.
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Table 6.32. B + S by Asymptotic Method for an elliptic concrete beam.

Eigenfrecuencies by 1-D FEM

Table 6.33. Euler-Bernoulli by 1-D FEM for an elliptic concrete beam.
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Table 6.34. B + R by 1-D FEM for an elliptic concrete beam.

Table 6.35. B + S by 1-D FEM for an elliptic concrete beam.
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7.2.3 Steel

Figure 6.6. Physical parameters for an elliptic steel beam.

Table 6.36. Eigenfrecuencies by 3d FEM for an elliptic steel beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.37. Euler Bernoulli by Asymptotic Method for an elliptic steel
beam.

Table 6.38. B + R by Asymptotic Method for an elliptic steel beam.
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Table 6.39.B + S by Asymptotic Method for an elliptic steel beam.

Eigenfrecuecnies by 1-D FEM

Table 6.40. Euler-Bernoulli by 1-D FEM for an elliptic steel beam.
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Table 6.41. B + R by 1-D FEM for an elliptic steel beam.

Table 6.42.B + S by 1-D FEM for an elliptic steel beam.
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7.3 Rectangular Beam

7.3.1 Aluminium

Figure 6.7. Physical parameters for a rectangular aluminium beam.

Table 6.43. Eigenfrecuencies by 3d FEM for a rectangular aluminium beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.44. Euler-Bernoulli by Asymptotic Method for a rectangular
aluminium beam.

Table 6.45. B + R by Asymptotic Method for a rectangular aluminium
beam.

63



Table 6.46. B + R by Asymptotic Method for a rectangular aluminium
beam.

Eigenfrecuecnies by 1-D FEM

Table 6.47. Euler-Bernoulli by 1-D FEM for a rectangular aluminium beam.
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Table 6.48. B + R by 1-D FEM for a rectangular aluminium beam.

Table 6.49. B + S by 1-D FEM for a rectangular aluminium beam.
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7.3.2 Concrete

Figure 6.8. Physical parameters for a rectangular concrete beam.

Table 6.50. Eigenfrecuencies by 3d FEM for a rectangular concrete beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.51. Euler-Bernoulli by Asymptotic Method for a rectangular
concrete beam.

Table 6.52. B + R by Asymptotic Method for a rectangular concrete beam.
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Table 6.53. B + S by Asymptotic Method for a rectangular concrete beam.

Eigenfrecuencies by 1-D FEM

Table 6.54. Euler-Bernoulli by 1-D FEM for a rectangular concrete beam.
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Table 6.55. B + R by 1-D FEM for a rectangular concrete beam.

Table 6.56. B + S by 1-D FEM for a rectangular concrete beam.
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7.3.3 Steel

Figure 6.9. Physical parameters for a rectangular steel beam.

Table 6.57. Eigenfrecuencies by 3d FEM for a rectangular steel beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.58. Euler-Bernoulli by Asymptotic Method for a rectangular steel
beam.

Table 6.59. B + R by Asymptotic Method for a rectangular steel beam.
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Table 6.60. B + S by Asymptotic Method for a rectangular steel beam.

Eigenfrecuencies by 1-D FEM

Table 6.61. Euler-Bernoulli by 1-D FEM for a rectangular steel beam.
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Table 6.62. Euler-Bernoulli by 1-D FEM for a rectangular steel beam.

Table 6.63. B + S by 1-D FEM for a rectangular steel beam.
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7.4 Square Beam

7.4.1 Aluminium

Figure 6.10. Physical parameters for a square aluminium beam.

Table 6.64. Eigenfrecuencies by 3d FEM for a square aluminium beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.65. Euler-Bernoulli by Asymptotic Method for a square aluminium
beam.

Table 6.66. B + R by Asymptotic Method for a square aluminium beam.
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Table 6.67. B + S by Asymptotic Method for a square aluminium beam.

Eigenfrecuencies by 1-D FEM

Table 6.68. Euler-Bernoulli by 1-D FEM for a square aluminium beam.
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Table 6.69. B + R by 1-D FEM for a square aluminium beam.

Table 6.65. B + S by 1-D FEM for a square aluminium beam.
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7.4.2 Concrete

Figure 6.11. Physical parameters for a square concrete beam.

Table 6.71. Eigenfrecuencies by 3d FEM for a square concrete beam.
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Eigenfrecuencies by Asymptotic Method

Table 6.72. Euler-Bernoulli by Asymptotic Method for a square concrete
beam.

Table 6.73. B + R by Asymptotic Method for a square concrete beam.
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Table 6.74. B + S by Asymptotic Method for a square concrete beam.

Eigenfrecuencies by 1-D FEM

Table 6.75. Euler-Bernoulli by 1-D FEM for a square concrete beam.
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Table 6.76. B + R by 1-D FEM for a square concrete beam.

Table 6.77. B + S by 1-D FEM for a square concrete beam.
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7.4.3 Steel

Figure 6.12. Physical parameters for a square steel beam.

Table 6.78. Eigenfrecuencies by 3d FEM for a square steel beam.

Eigenfrecuencies by Asymptotic Method
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Table 6.79. Euler-Bernoulli by Asymptotic Method for a square steel beam.

Table 6.80. B + R by Asymptotic Method for a square steel beam.
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Table 6.81. B + S by Asymptotic Method for a square steel beam.

Eigenfrecuencies by 1-D FEM

Table 6.82. Euler-Bernoulli by 1-D FEM for a square steel beam.
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Table 6.83. B + R by 1-D FEM for a square steel beam.

Table 6.84. B + S by 1-D FEM for a square steel beam.
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